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Abstract

Neural networks are a powerful tool which can be used to provide numerical solutions
for scientific problems. However, the addition of physical constraints into the network’s loss
function can help improve accuracy under the constraints of limited training data. This
is where Physics Informed Neural Networks (PINNs) become particularly useful to predict
the solution to PDEs. For our project, we specifically worked with the 2D acoustic wave
equation where pressure and velocity vary over both space and time under the influence of
a driving force at a source point. This equation plays an important role in mechanics, and
specifically seismic wave activity. For our project, we trained neural networks to asses their
ability to both interpolate between training data points and extrapolate beyond training
points. We used a Discontinuous Galerkin (DG) method to generate ground truth data,
utilizing a variety of time steps and mesh sizes. This data was treated as ground truth and
used to train and test multiple different neural network architectures to predict the solution
to the 2D wave equation. Our sponsor, Advanced Micro Devices (AMD), is a company
which develops high-performance processor technologies such as Central Processing Units
(CPUs) and Graphics Processing units (GPUs). We were given access to AMD’s HPC
system, allowing us to run our code in parallel on their GPUs. This project is of interest
to our sponsor because they offer CPUs and GPUs that could be useful to shorten the run
time and reduce the cost of such computations.
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Chapter 1

Introduction

1.1 Advanced Micro Devices
Advanced Micro Devices (AMD) is a semiconductor manufacturing company based

in Santa Clara, California. The company develops high-performance processor technologies
such as Central Processing Units (CPUs) and Graphics Processing Units (GPUs) for busi-
ness and consumer markets (see Chapter 2). Not only does AMD develop these technologies,
but they also look for ways for them to be involved in traditional science. AMD has an
“Artificial Intelligence (AI) for science mission” in which they seek out traditional science
partners to help them develop faster ways of performing their tasks. AMD is involved in
scientific computing, machine learning, and data analytics. In these fields, they look for
ways their technologies can benefit the methods already in place and drive forward scientific
advancement.

1.2 Motivation
In Machine Learning, developing neural networks beyond the classification tasks, par-

ticularly in scientific computing, is a notable area of interest. Specifically, in recent years
interest has been growing in developing neural network-based methods to solve Partial Dif-
ferential Equations (PDEs) ([20], [1]). At present, classical numerical algorithms such as
Discontinuous Galerkin methods produce results with high accuracy [12]. However, these
algorithms are computationally expensive, have long run times, and often produce results
on a pre-determined grid.

After they have been trained, neural networks are a valuable option since they are fast
to evaluate and can produce results on the full data domain. However, a standard neural
network may yield less accurate results than a numerical algorithm if not enough training
data is available. To achieve both accuracy and efficiency, the 2023 RIPS AMD team
created a Physics Informed Neural Network (PINN), which is a neural network endowed
with physical constraints.

Our team developed and analyzed the performance of certain fast surrogate models
for predicting the solution of the 2D acoustic wave equation. This PDE model, which
simulates wave propagation in a 2D spatial domain, is used in multiple areas such as oil and
gas exploration and predictions of seismic activities. The aim of the project was to create a
model that is faster than classical numerical algorithms, while retaining their accuracy. We
attempted to achieve this goal using Physics Informed Neural Networks and by combining
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high performance computing and traditional science. The high performance computing
systems that we have access to allowed us to simulate data and train our networks on both
CPUs and GPUs. Once we had networks that made sufficiently accurate predictions, we
were able to benchmark the different methods of modelling the wave equation on both CPUs
and GPUs. With these different methods, we trained our network on a coarse grid of data,
and once trained then produced a much finer mesh of data more quickly than a classical
numerical method could.

1.3 Approach
We examined the two dimensional acoustic wave equation, which can be characterized

as follows:
∂p

∂t
+ κ · ∇v = fs(x, t) (1.1)

∂v

∂t
+

1

ρ
∇p = 0 (1.2)

x = (x, y) ∈ [0, 1]× [0, 1]

t ∈ [0, 2]

where fs is the driving force from sources at different spatial locations, p is the pressure at
any time step, κ and ρ are material properties and v is the velocity at any time step. Time
is represented as t and x refers to the vector in space.

The 2022 RIPS AMD team demonstrated that the embedding of physics information in
neural networks reduces the model uncertainty while improving the accuracy using the wave
equation. As the 2023 team, we focused more on the speed of computation with PINNs
instead of their accuracy as compared to neural networks. Specifically, we tried to improve
accuracy while balancing it with the computing time. Another difference between the two
projects is that modelling the wave using the forcing term, fs, introduced discontinuities
into the problem that were not studied last year.

We used a Discontinuous Galerkin (DG) method to generate solutions to the 2D acoustic
wave equation with different sources [20]. This data was considered the ground truth and
was used to train PINNs that act as surrogate models for the system [19]. We assessed
the network’s ability to interpolate between training points using a driving forcing function
that varies in space and functional form.

As the major goal for the project was to balance accuracy and speed, we analyzed
the time it takes for our models to make their predictions versus the accuracy of those
predictions. The developed surrogate models were evaluated based on their prediction
accuracy and their performance against the ground truth at multiple receiver locations. We
then improved the efficiency of elements of the learning scheme and network architecture.

AMD granted us allocation on a remote high-performance computing (HPC) system
with multiple GPU accelerators per node and high-speed interconnect. These resources
allowed us controlled evaluation of various run time performances, and provided an oppor-
tunity to explore performance enhancements via GPU acceleration.

1.4 Overview
We begin with Chapter 2 where we discuss the background of our project in detail.

We give a literature review on the acoustic wave equation, Discontinuous Galerkin methods,

14



neural networks, and physics informed neural networks. An insight of our data generation
process as well as a comparison on CPUs and GPUs are also in this chapter. In Chapter 3,
we introduce our neural network, its architecture and the loss function we have used for it.
Lastly, we share the results we have obtained so far in Chapter 4 and discuss what can be
done to improve them.
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Chapter 2

Background

2.1 The Acoustic Wave Equation
The acoustic wave equations - see Equation (1.1) and Equation (1.2) - govern waves

that act as small perturbations relative to the background level of a field, such as the
pressure of a sound wave, or waves on the surface of a body of water [5].

In general, there are two ways to use this paradigm to model a wave propagating from
a source, using initial conditions or forcing terms. When modelling a wave via initial
conditions, it is assumed that at t = 0, there is a disturbance in the pressure field given by,
for example, a Gaussian impulse shown below. The wave then propagates in response to
this pressure differential.

p(0,x) = a · exp
(
− 1

2σ2
||x− xs||2

)
(2.1)

Here, a is the amplitude of the wave and the standard deviation, σ, controls how lo-
calised the impulse is at t = 0. The fs(x, t) term in Equation (1.1) is zero as we assume
there is no further influence or external force on the system. This regime leads to continuous
solutions with bounded derivates, making them easier to deal with numerically.

In contrast, we could also study wave phenomena by explicitly modeling the external
forces on the system via fs(x, t). One common choice is to model these forces using the
Ricker wavelet [21], shown in Equation (2.2). We used the Ricker wavelet when modelling
wave propagation throughout the rest of this work.

fs(x, t) =
τ

π

(
1− (2πω)2(t− t0)

2
)
exp

(
−1

2

[
(2πω)2(t− t0)

2 + 2τ ||x− xs||2
])

(2.2)

The parameters of interest, that control the dynamics of the wave, are the steepness τ
and peak frequency ω. In the idealised case of τ = ∞ on an infinite grid, the resulting PDE
is solved by a sinusoidal wave of frequency ω propagating from a point source xs. However,
in this case the resulting forcing term f is the Dirac δ function, leading to discontinuities
in the data. Thus, in practice we chose 1 << τ < ∞ to model waves with small sources
whilst maintaining a continuous forcing term that allows us to solve the PDE numerically.
Moreover, the spacial derivatives fs are bounded uniformly by M

√
τ . Picking the exact

value of τ is thus a tradeoff between more idealistic wave-like dynamics (larger values) and
“smoother” forcing terms that easier to deal with numerically (smaller values).
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2.2 Discontinuous Galerkin Methods
Discontinuous Galerkin (DG) methods are a set of powerful numerical techniques

used for approximating solutions of partial differential equations (PDEs). We used an
implementation of these methods that is very similar to the treatment of Cockburn and
Shu in [3]. This generates the data that we considered “ground truth” for the purpose of
training neural networks.

In the DG method considered here, the space domain [0, 1]× [0, 1] is partitioned into a
rectangular n× n grid of smaller blocks. In each block, the solution, p, is approximated by
a polynomial ψ(x), with coefficients Wj that evolve over time [20]. In other words, we can
approximate the solution on each block as

p(x, t) =
n∑

j=1

Wj(t)ψj(x) (2.3)

If the basis, {ψj}1≤j≤n, of polynomials is chosen to be orthogonal, then the solution
p(t,x) must follow Equation (2.4)

dWj

dt
=

1∫
Ω |ψj(x)|2dx

[∫
Ω
∇ψjvdx−

∫
∂Ω
ψjh(w

+,w−,n)dS +

∫
Ω
ψj(x)fs(x, t)dx

]
(2.4)

Where v(x, t) is the velocity field of the solution, and S = (w+,w−) is the field at the
boundary between two cells. The numerical flux, h, allows for the exchange of information
between blocks by satisfying the following equations.

h(w+,w−,n) = −h(w−,w+,−n) (2.5)

h(w,w, n) = v(w) · n (2.6)

In our implementation, the full solution p(x, t) was obtained for any point in time by
integrating these equations with a second-order Runge-Kutta scheme, as in [20].

2.3 Data
For this project we received access to the “WaveSims” codebase, authored by Laurent

White of AMD. “WaveSims” implements the DG method described above to solve the wave
equation for a variety of grid sizes and input parameters. After receiving this code, we first
altered it to be able to generate data in parallel on multiple CPUs. The initial version of
the code generated all of the data for different sources in sequence, but we were able to edit
it to be able to utilize AMD’s multiple CPUs. This sped up the data generation process
and allowed us to compile data from a variety of source locations more quickly. We used
this to create and collect the training data for our network.

For the first iteration, we ran a simulation on the spatial domain [0, 1]×[0, 1] for t ∈ [0, 2].
Initial conditions were set to be 0 and a source-wave was generated by the Ricker wavelet
centered at the point (xs, ys) = (0.4, 0.2) with the parameters t0 = 0.2, τ = 5000, ω = 5 .
We collected pressure p, x-velocity u, and y-velocity v at each point on a 32 × 32 grid of
points every 0.012 seconds. This gave us n = 3344841 data points for which we had the
inputs (t, x, y) and outputs (p, u, v) for our network.

In subsequent experiments we repeated the some process to obtain data for several
different source points, and over grids of different sizes.
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2.4 Neural Networks
First introduced by McCulloch and Pitts in 1943, neural networks (NN) are a comput-

ing technique to resemble the human brain for problem solving [4]. The human brain has
computing units called “neurons” which work in parallel and exchange information using
their connections. Artificial neural networks work in a similar way, consisting of computing
units where each unit is connected by weights. These simple units calculate the sum of
weights from inputs and by using an activation function, find out the output [25].

In artificial neural networks the units, neurons, are arranged in layers. Neurons in the
same layer behave in the same manner and they usually have the same activation function.
These units can be fully interconnected or not connected. A neural network architecture is
the arrangement of these neurons in their layers, and the patterns of connection between
and within layers [22]. To produce an output, the neural network takes input data and
applies multiple compositions of affine and non-linear functions to it. On the figure below,
an example of a five layer neural network is given Figure 2.1.

Figure 2.1: Representation of a neural network architecture with five hidden layers

To give an example, a two layer neural network can be expressed in the form:

N(x, θ) = σ(w2σ(w1x+ b1) + b2) (2.7)

where wi are the weight matrices, bi are the bias vectors, and σ is a nonlinear activation
function.

Examples for nonlinear activation functions can be given as [16]:

• Sigmoid Function
It is a nonlinear activation function mostly used in feed-forward neural networks. This
function is defined for real input values and it is a bounded differentiable function.
Sigmoid function’s formulation can be given as:

f(x) =
1

1 + e−x
(2.8)

• Hyperbolic Tangent Function (tanh)
Hyperbolic tangent function is another type of activation function known as the
tanh function. It is a smooth function which range lies between -1 to 1. For multi-
layered neural networks it gives better training performance compared to the sigmoid
function. It’s formulation can be shown as:

19



f(x) =
ex − e−x

ex + e−x
(2.9)

• Rectified Linear Unit (ReLU) Function
ReLU is the most widely used activation function for deep learning applications. It is
a faster activation function option compared to sigmoid and tanh and in most cases
it gives a better performance. Using the gradient-descent method, it provides an easy
optimization on linear models. ReLU performs a treshold operation to inputs and if
the values are less than zero, it sets these values to zero. Thus, it is represented as:

f(x) = max(x, 0) =

{
xi, xi ≥ 0

0, xi < 0
(2.10)

• Softmax Function
The Softmax function is used to compute the probability distribution of a vector of
real numbers. It gives an output which is between 0 and 1 where the sum of the
probabilities are equal to 1.

f(x) =
exp(xi)∑
j
exp(xj)

(2.11)

For our baseline neural network we are using the tanh activation function for each layer,
except the last layer which has a linear activation function.

2.5 Physics Informed Neural Networks
A Physics Informed Neural Network (PINN) is a deep learning framework that inte-

grates knowledge about the underlying physics of the data, either in its architecture or loss
function, see for example ([17], [19], [18]). The motivational background in this algorithm
is that prior knowledge or constraints can provide accurate and physically consistent data
even in the presence of data imperfections such as outliers and noisy values or absence of
data.

2.6 CPU and GPU
Central Processing Units (CPUs) and Graphics Processing Units (GPUs) are essen-

tial components of modern computer systems. They are processors designed to perform
computational tasks. CPUs are considered the “brain” of a computer and they coordinate
and execute instructions for all other hardware components. Through a process known as
multi threading, a CPU can handle multiple tasks simultaneously with its multiple cores.
On the other hand, GPUs were initially developed to accelerate graphics for gaming and
visual purposes. However, their capabilities with parallel processing have led to their usage
in various fields such as machine learning and scientific research.

In the recent years, trends in GPU design have provided them larger memory, increased
parallelism and ever-increasing degrees of programmability. With these features, GPUs
have gained enough flexibility to be used in non-graphic applications [23].
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The data parallel architecture of GPUs delivers notable performance gains for compu-
tationally intense applications. In performance analysis tests for deep learning applications,
it was shown that GPUs complete tests faster compared to CPUs and the increase in the
number of cores and the core operating frequency seems to shorten the running time [2].

In our project we were granted access to an HPC (High Performance Computing) system
with multiple GPU accelerators per node and high-speed interconnect. These resources
allowed us to evaluate various run time performances and provided an opportunity to explore
performance enhancements through GPU accelerators.

Using application accelerators such as GPUs has been among the latest trends in the
HPC community, as they are a cost-effective option. GPU accelerators significantly reduce
space, power, cooling demands, and the number of operating system images that must be
managed relative to CPU clusters with similar computational capabilities [7].
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Chapter 3

Computational Benchmarking

This Chapter describes our methods for benchmarking and improving execution times
for the “WaveSims” codebase. Such improvements allowed us to generate more data
throughout the project, which sped up the model iteration process. We first considered
execution times for the DG method run on finer grids; and secondly, we implemented mul-
tiple simulations in parallel to speed up data generation.

3.1 Grid Length in the DG Method
In the following, we consider the grid length, n, where the PDE was simulated with

DG method on an n× n grid. This was of interest as we wished to obtain data at as many
points as possible, which necessitates finer grids. The goal was to obtain ground truth data
on as fine a grid as practically possible.

We also had to ensure that simulations remained numerically stable, a necessary con-
dition for which is that the Courant–Friedrichs–Lewy (CFL) number remains bounded. In
this context, this condition is equivalent to keeping n∆t = c constant for every simulation.
Thus, the timestep, ∆t, in each simulation must be kept inversely proportional to n, as is
shown in Figure 3.1.

Figure 3.1: The length of grid, n, and the timestep size, ∆t, required to keep the CFL number
constant

Figure 3.2 shows execution time increasing with increases in grid length. Consider the
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total number of integrals that need to be computed, given by 3 × n2d 2
∆te - as 3 integrals

need to be calculated for every grid point at each time step. Figure 3.3 shows that execution
time is linear in the total number of integrals.

Figure 3.2: The length of grid, n, against the time taken to run one simulation

Figure 3.3: The total number of integrals against the time taken to run one simulation.
Both axis are log-scale.

3.2 Parallelization
As we needed to generate data from multiple sources, with different grid lengths, we

were interested in speeding up the time to simulate this data. There were three possible
directions in which one could consider parallelizing the code.

As each integral is formulated as a dot product, in-built numpy linear algebra paral-
lelization schemes had the potential to improve performance. However, we found that this
was ineffective due to the number of overheads introduced. Forcing a simulation to run on
only one thread was found to be optimal.

One other possibility was splitting the domain into smaller sub-meshes, and computing
integrals in parallel. This approach, whilst interesting, was deemed outside the scope of
this project. Attention was instead focused on parallelizing entire simulations separately.
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The existing “WaveSims” codebase offered a functionality to run multiple simulations in
one script. However, this implementation ran each simulation serially, one after the other.
When working with multi-core CPU architectures, significant improvements to run time
can be acheived by running simulations on parallel threads. Theoretically, the time taken
to run any number of simulations can be cut in half when running on two cores, as each
simulation is completely independent of any other simulation.

For a given number m of simulations, and a parallel algorithm running on k nodes,
consider the speed up factor SF . This is defined as the time taken to run on one node
divided by the time taken to run on k nodes. As we run each simulation independently,
then, theoretically we have

SFtheory(k) =
m

dk/me
= k if k|m (3.1)

We implemented parallel simulations with the python package mpi4py. This was bench-
marked by running simulations for 32 different source points, each on a 128× 128 grid for
t ∈ [0, 2]. For k ∈ {1, 2, 4, 8, 16, 32}, we obtained the empirical speed up factor SFemp(k).
At the fullest possible parallelization, k = 32, we had SFemp(32)

SFtheory(32)
= 0.73. Thus, we had

achieved 73% speed up efficiency in this implementation.

Figure 3.4: SFemp(k) for k ∈ {1, 2, 4, 8, 26, 32}.
The solid line shows SFtheory(k). Both axis are log scale.

3.3 Central Differences and Auto-Differentiation
Methods

Since we implemented our networks in Python with PyTorch, we initially used the
autograd system to compute the gradients in our PDE loss terms. Autograd is a reverse au-
tomatic differentiation system. Automatic differentiation works by taking a computational
graph and calculating the gradients of the inputs. In order to do reverse automatic differ-
entiation, autograd constructs a graph of all operations that created the data as operations
are executed. This produces a directed acyclic graph from the output tensors (roots) to the
input tensors (leaves). In order to compute gradients using the chain rule, autograd then
traverses this graph from roots to leaves. At every iteration, this graph is recreated from
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scratch. While this allows for straightforward computations through traversing the graph,
this method can become costly. As the complexity of operations increases, the number of
steps necessary to compute gradients also increases. Storing and traversing the computa-
tional graph can become costly in both memory and time, so we looked for ways to reduce
these costs.

One method we decided to try instead is the central difference method. Since we were
computing the derivatives in the PDE loss function only on the grid of collocation points,
we had a cartesian grid of data. This allowed us to use a finite difference method effectively.
In our PDE loss functions, we needed to compute the derivative of pressure with respect
to x, y and t, the derivative of x-velocity, u, with respect to x and t, and the derivative of
y-velocity, v, with respect to y and t.

In order to compute the derivatives of P, u, and v with respect to time, we had to choose
a ∆t, and perform the following calculations where f would be our network:

[Ppdt, updt, vpdt] = f([t+ 0.5∆t, x, y])

[Pmdt, umdt, vmdt] = f([t− 0.5∆t, x, y])

Then we would be able to calculate dP
dt =

Ppdt−Pmdt

∆t . We performed similar calculations
for the derivatives of u and v with respect to time, as well as P, u, and v with respect to x
and y using ∆x and ∆y.

These calculations introduced new parameters into our networks, ∆x,∆y, and ∆t. Ul-
timately we settled on 0.00001 for all three. To compare the speed of using each method,
we trained a network for 100 epochs using autograd and another using central difference.
The autograd network took 1.73 seconds per epoch, while the central difference network
took 0.24 seconds per epoch.
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Chapter 4

Data Only Neural Networks

4.1 Architecture
For our Data Only Neural Network (Data NN), we used a residual network architec-

ture that consists of five hidden layers, each with 100 nodes. There is a residual connection
between the first and forth hidden layers, and between the second and fifth hidden lay-
ers. Extensive numerical experimentation suggested that this network would be expressive
enough to fit the PDE. Figure 4.1 shows graphically our network architecture.

Figure 4.1: A graphical representation of the residual network architecture

Data NNs were trained only on mean-squared error as the loss function over data points.
This training data consists of three inputs, t, x, y, and three outputs, p, u, v, which were
obtained via the DG based simulation as described in Section 2.3.

We trained three different Data NNs for our purpose – one using data obtained on a
16 × 16 grid, the second on a 32 × 32 grid and lastly on a 64 × 64 grid. For interpolation
models, we used 80% of the data points available which were approximately 6240 and 44430
points for the respective grid sizes. For extrapolation models, we used the first 50% of the
time points on the same grids, resulting in about 3750 and 27770 points. We used a learning
rate scheduler for both models starting with a learning rate of 10−3, decreasing the learning
rate by a multiplicative factor of 0.1 every 3000 epochs. The networks trained on the above
sparse grids were tested on a fine 128× 128 grid. It should also be noted that the labelled
training data for this method was obtained from the Discontinuous Galerkin method, as
outlined in Chapter 2 which is computationally inefficient. Ideally, when we added the PDE
loss to our neural network, we would have liked to keep the amount of labeled data to a
minimum.

4.2 Data Only Neural Network Results
The Data NN was trained on data points taken from 16×16, 32×32 and 64×64 grids
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on the entire space and time domain. We used the DG method as outlined in Chapter 2
to generate the labelled training data for this network. After training the model with data
created on 16 × 16 grid for 168500 epochs, we obtained the plots comparing the ground
truth and prediction of the network for pressure, x and y velocity which can be seen on
Figure 4.2.

For the network trained on data with 32×32 grid for 106000 epochs we have the following
results on Figure 4.3.

On Figure 4.4 we have the results for the network trained on data with 64× 64 grid for
58500 epochs.

As expected, the network performs a lot better in the first half of the time domain since
we only provided it training data there. The hope is that the network should extrapolate to
the rest of the time domain once we add the PDE loss but ultimately when we incorporate
the PDE loss into the network we would keep this data to a minimum. This is because it
is computationally expensive to generate this data and one of the goals of this project is to
find less expensive methods for solving the wave equation.

We also created heat map animations for our trained models as well as the ground truth
to have a better visual understanding in our results. On Figure 4.5, a comparison between
the prediction from trained model on 16 × 16 and the ground truth can be seen. Figures
represents the state of pressure on a defined time, t=0.5. The norm of differences between
the ground truth and network prediction is also shown as heat map. The network tries to
predict the pressure but both the state of the pressure and the values are not so accurate.

Figure 4.6 shows the state when t=1.5 where the network failed to capture the reflective
movement which starts on the top of the shown area. As the network was trained with data
created on a courser grid like 16× 16, high error in the prediction was expected. However,
failure to capture the reflection had to be investigated in order to be associated with this
fact. To investigate, heat map animations for trained model on data with 32× 32 grid were
compared.

The comparison between the ground truth and the prediction from the trained model
on 32 × 32 at t=0.5 can be seen on Figure 4.7. It is obvious that this model provided
more accurate results than the model on 16× 16. To see whether this model captured the
reflection or not, the heat map representation at t=1.5 was generated.

Figure 4.8 a comparison on the ground truth and trained model for 32×32 grid at t=1.5
can be seen. It is clear that this model was able to reflect the movement. Hence, having a
denser grid size for data to obtain the reflection is the right argument.

On Figure 4.10 comparisons on the ground truth and trained model for 64 × 64 grid
at t=0.5 and t=1.5 is given for further investigation. The expectation was that the model
trained on 64 × 64 should be able to capture the reflection at t=1.5. However, it failed to
do so. We suspect the model needs more training even though it provides better numerical
results compared to our other models.

To check whether our arguments applies for the times after t=1.5 or not, heat maps for
all trained models are created at t=1.92. On Figure 4.11 the heat map comparison between
the ground truth and the model trained on 16× 16 for the defined time is given. While the
model tries to provide nonzero predictions it still can not capture the reflective movement.

Considering Figure 4.12, we can see that this is not the case for the trained model on
32 × 32 as expected. The model is able to reflect the movement and these representations
aligns with the results given on Figure 4.6 and Figure 4.8.

On Figure 4.13, we can see that model trained on 64 × 64 was still unable to capture
the reflection since it needs more training.

The trade off between accuracy and time for making predictions using different grid
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Figure 4.2: Results for pressure x and y-velocity for trained model on 16× 16 grid

sizes for training can be seen in table 4.2. Model execution times do not change significantly
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Figure 4.3: Results for pressure x and y-velocity for trained model on 32× 32 grid

between the trained models, and it should be noted that these times represent orders of
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Figure 4.4: Results for pressure x and y-velocity for trained model on 64× 64 grid

magnitude improvement compared to the time taken to generate data on a 128× 128 grid
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Figure 4.5: Heat map representations of the pressure for ground truth, trained model on 16 × 16
grid and the difference at t=0.5
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Figure 4.6: Heat map representations of the pressure for ground truth, trained model on 16 × 16
grid, and the difference at t=1.5
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Figure 4.7: Heat map representations of the pressure for ground truth, trained model on 32 × 32
grid and the difference at t=0.5
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Figure 4.8: Heat map representations of the pressure for ground truth, trained model on 32 × 32
grid and the difference at t=1.5
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Figure 4.9: Heat map representations of the pressure for ground truth, trained model on 64 × 64
grid and the difference at t=0.5
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Figure 4.10: Heat map representations of the pressure for ground truth, trained model on 64 × 64
grid and the difference at t=1.5
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Figure 4.11: Heat map representations of the pressure for ground truth, trained model on 16 × 16
grid and the difference at t=1.92

38



Figure 4.12: Heat map representations of the pressure for ground truth, trained model on 32 × 32
grid and the difference at t=1.92
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Figure 4.13: Heat map representations of the pressure for ground truth, trained model on 64 × 64
grid and the difference at t=1.92
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Model on 16× 16 grid Model on 32× 32 grid Model on 64× 64 grid
Difference at t=0.5 56.5 13.9 5.1
Difference at t=1.5 73.5 41.9 35.8
Difference at t=1.92 75.0 43.4 45.05

Table 4.1: A table comparison of the Frobenius norm of differences between model predictions and
ground truth for respective times.

using DG methods (' 350s). On the other hand, relative errors improve notably when
moving from 16× 16 to 32× 32 and to 64× 64 training data.

The time spent training, while large, is not of concern because it is a one-time expense
and once the model is trained it can be evaluated on any grid very fast. Thus, this cost can
amortised effectively.

16x16 grid on 128x128 32x32 grid on 128x128 64x64 grid on 128x128
Model Execution Time <1 s <1 s <1 s

Relative Error 82.9% 27.4% 15.3%
Training Time 6 hours 6 hours 15 hours
Table 4.2: A table comparison of accuracy and time trade off between trained models

After creating the Data NN and obtaining results from our trained models, we started
to work on PINNs in order to predict faster and more accurately compared to our data only
network.
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Chapter 5

Physics Informed Neural Networks

5.1 Overview
Physics Informed Neural Networks (PINNs) have the ability to incorporate physical

constraints into vanilla Neural Networks, greatly enhancing their ability to model PDEs.
The main idea behind PINNs is to train the network on a set of data points while also
constraining the network to obey the PDEs they are supposed to model. Since the network
is already supposed to be modelling a continuous function that fits the data points, the PDE
constraints can easily be enforced by computing the necessary derivatives at the required
points, which are referred to as collocation points. As a result, this helps the network
reduce its dependency on labelled data, which is computationally expensive to generate.
The easiest way to make this modification is by adding an extra term to the loss function,
as described in the following section.

In order to investigate the performance of PINNs on modelling the 2D acoustic wave
equation, we broadly trained two different models – extrapolation models and interpolation
models. For the first category, we provided the network with data over the entire space and
time domain. For the second, we provided the network with data over the first half of the
time domain and the entire space domain. We found that for our problem, PINNs were not
effective at improving upon the data only models.

5.2 Physics Loss and Collocation Points
For computing the data loss, we used a standard mean squared error, as shown in

Equation (5.1), to compare the predicted pressure and predicted velocity to their respective
ground truths.

1

n

n∑
i=1

||p̃− p||22 + ||ũ− u||22 + ||ṽ − v||22 (5.1)

When implementing the physics loss function, we considered the first order form of the
wave equation as described in Chapter 1, while also accounting for the reflective boundary
conditions and zero initial conditions. These conditions together essentially informed our
network to obey some physical laws (in our case the PDE) while predicting the outputs.
For the pressure and velocity comparisons, we used the L1 error norm because that has
shown faster convergence in the case of PINNs [13]. Together, the overall loss function is
summarized below:
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Loverall = w1 · Ldata + w2 · Lphysics (5.2)

Lphysics = LDO + LBC + LIC (5.3)

LDO = ||∂tp̃+ ∂xũ+ ∂tṽ − fs(x, t)||1 + ||∂xp̃+ ∂tũ||1 + ||∂yp̃+ ∂tṽ||1 (5.4)

LBC = ||∂xũ||1 + ||∂yṽ||1 (5.5)

LIC = ||p̃(x, y, 0)||1 + ||ũ(x, y, 0)||1 + ||ṽ(x, y, 0)||1 (5.6)

where LDO is the differential operator loss coming from the 2D Acoustic Wave Equation as
described in Chapter 2, LIC is the initial condition loss, and LBC is the boundary condition
loss.

The main advantage for the Lphysics component of the loss is that it should provide our
network more information without the availability of labelled data. Thus, these points can
be provided to the network on a much finer grid over space and time. In theory, they should
help the network improve the results in regions where we already have provided it labelled
data, and also approximate solutions in regions where we do not provide the network with
labelled data. The figures below demonstrate the way we would theoretically sample points
for computing Ldata and Lphysics.

Figure 5.1: Sampling from a finer grid for Lphysics and a coarse grid for Ldata

Figure 5.2: Extrapolation models taking labelled data only in the first half of the time domain
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5.3 Learning Schemes and Results
5.3.1 Scheme 1 : Data + Physics Loss over the entire domain

To train models that used both physics and data loss, we trained on labelled data
points first and incorporated the physics loss in the training process after sufficient training
loss convergence. The data points were provided on a coarse 32×32 grid with 51 time steps
in our domain, while the collocation points for the physics loss were sampled from a fine
100×100 grid with 1671 time steps in the entire domain. When implementing interpolation,
the data points were sampled over the [0, 2] time region. When implementing extrapolation,
the data points were sampled over the [0, 1] time region.

Figure 5.3: Results from both Interpolation and Extrapolation Models

We trained networks with added physics loss for both extrapolation and interpolation
and noticed that the network converged to a constant zero prediction over all of space and
time, indicating a strong convergence towards this solution. Based on our observations
from these results, we investigated the behavior of the physics loss function. Some of the
potential issues we identified were – i) traversing the highly irregular loss landscape, ii) a
potential numerical discontinuity in the initial time steps due to the forcing term – PINNs
tend to struggle to capture such sharp changes [11] iii) a highly localized Ricker wavelet
near the source in the forcing term, and iv) complex parameters for modelling the wave
(steepness 5000; frequency 5). With these issues in mind, we moved forward to train the
network with other schemes in attempts to handle these challenges.

Complex Loss Landscape

The work done in [8] indicates that training PINNs for modelling PDEs with complex pa-
rameters can be a challenging task. They show that vanilla PINNs only manage to train
well for easy parameter regimes and fail to learn the relevant physics for more challeng-
ing and realistic regimes. The paper specifies that the added regularization term involves a
differential operator which could be ill-conditioned and non-convex (unlike L1 or L2 regular-
ization). They claim the added PDE-based regularization term can make the loss landscape
significantly more complex, making optimization a much more difficult task. It should also
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be noted that some of the failure modes discussed in [8], such as the 1D diffusion reaction
equation, vary over one spatial direction and time. The PDE we are trying to model has
two spatial directions, along with time, and we naturally expected it to have a much more
complex loss landscape. The authors of the same paper proposed two learning schemes to
handle these complex loss regimes, both of which are described below.

5.3.2 Scheme 2 : Curriculum Learning
Curriculum learning as described in [8] has proven to be useful in training PINNs with

complex loss landscapes. The idea behind this approach is to start training the network with
some set of parameters for the PDE that the network can easily capture, and then iteratively
work towards the more complex parameters that we treat as our target constraints.

In our case, those parameters would be the frequency (ω) and steepness (τ) terms in
the Ricker wavelet (fs(x, t)) as shown below. A high value of τ makes the wave increasingly
localized, and a high value of ω makes it highly oscillatory.

fs(x, t) =
τ

π

(
1− (2πω)2(t− t0)

2
)
exp

(
−1

2

[
(2πω)2(t− t0)

2 + 2τ ||x− xs||2
])

(5.7)

While implementing curriculum learning for our network, we started by iteratively train-
ing the network in the following order – i) Steepness – 5; frequency – 2 ii) Steepness – 100;
frequency – 2 iii) Steepness – 1000; frequency – 3 iv) Steepness – 2000; frequency – 4 v)
Steepness – 5000; frequency – 5. However, this scheme did not yield promising results for
the wave under any of the parameters as seen in Figure 5.4. It should be noted that this
scheme was implemented under the constraints of no labelled data.

5.3.3 Scheme 3 : Sequence to Sequence Learning
Sequence to Sequence Learning as described in [8] also seeks to deal with the complexity

of the PDE parameters. In sequence to sequence learning, the network is trained on the
time steps in an iterative process, as opposed to training on the whole time domain at once.
In other words, we would train the network at the first time step ∆t before moving on to
train on to the second time step 2∆t while using ∆t as the initial conditions. When we
implemented the above scheme for our model, the results were less than ideal as can be seen
in Figure 5.6. The figure below describes the sequence to sequence learning scheme for a
problem varying in one spatial dimension over time.

5.3.4 Scheme 4 : Data Loss + Physics Loss over a specific
region

Another major issue that we found with the 2D acoustic wave equation is the dis-
continuity introduced by the forcing term during the initial time steps. PINNs might have
difficulties capturing such sharp changes, and such discontinuities might make the loss func-
tion ill-conditioned. Thus, we decided to remove collocation points from the first 0.8 seconds
of the time domain where the network would already be receiving data points for training.
We provided it labelled data during first 1 second of the time domain, and collocation points
during the last 1.2 seconds of the time domain. The overlap of 0.2 seconds between both
physics and data loss will be used by the physics loss as the initial condition during training.
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Figure 5.4: Results for Pressure under different parameters – i) Steepness – 5000; frequency – 5; ii)
Steepness – 100; frequency – 2; iii) Steepness – 5; frequency – 2
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Figure 5.5: Representation of Sequence to Sequence learning from [8]

Figure 5.6: Results from Sequence to Sequence Learning

We again notice in Figure 5.8 that the addition of physics loss gives us subpar results
in the region of extrapolation. Even the region of overlap seems to be inaccurate upon the
addition of the physics loss.

5.4 Conclusion
The schemes we have implemented so far have led us to the conclusion that PINNs

might not be appropriate for modelling the 2D acoustic wave equation when considering
forcing terms. This is especially the case in the absence of labelled data from the Galerkin
scheme. While PINNs have shown promising results for PDEs with simple parameters, the
physics loss landscape may be too complex for our PINN to regularize using any of the
existing schemes. The experimental results we have gotten so far demonstrate the same.
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Figure 5.7: Representation of the learning scheme

Figure 5.8: Results from this scheme on two sets of parameters

49





Appendix A

Abbreviations

1D. One Dimensional
2D. Two Dimensional
AI. Artificial Intelligence
AMD. Advanced Micro Devices
CPU. Central Processing Unit
DG. Discontinuous Galerkin
GPU. Graphics Processing Unit
HPC. High Performance Computing
IPAM. Institute for Pure and Applied Mathematics. An institute of the National Science
Foundation, located at UCLA.
MCMC. Markov Chain Monte Carlo
ML. Machine Learning
NN. Neural Networks
PDE. Partial Differential Equation
PINN. Physics Informed Neural Network
ReLU. Rectified Linear Unit Function
RIPS. Research in Industrial Projects for Students. A regular summer program at IPAM,
in which teams of undergraduate (or fresh graduate) students participate in sponsored team
research projects.
tanh. Hyperbolic Tangent Function
UCLA. The University of California at Los Angeles.
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