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Motivation

• The 2D Acoustic Wave Equation is an important equation in
mechanics, modelling a plethora of phenomena

δp

δt
+ κ ·∆v = fs(x, t)

δv

δt
+

1

ρ
∆p = 0

x = (x, y) ∈ [0, 1]× [0, 1], t ∈ [0, 2], fs forcing term, p
pressure, v velocity, κ viscosity, ρ density

• Discontinuous Galerkin methods are able to produce results with
high accuracy, but are computationally expensive and have long
run times ([3], [5])

• Neural networks are a valuable option as they are fast and have
proven accurate in solving PDEs like this

• A Physics Informed Neural Network (PINN) integrates knowl-
edge about the underlying physics of the data, providing acccu-
rate and physically consistent data even in the presence of noise
and outliers [4]

Data Generation

• Our data consists of source points, time, receiver points, pres-
sure, and x- and y-velocity

• We were given access to the codebase WaveSims created by
AMD which implemented the Discontinuous Galerkin Method

• We were also given access to AMD’s HPC systems, allowing us
to generate data efficiently

• We wished to utilize all 32 threads of the CPUs to generate our
data efficiently, so we implemented source-wide parallelization

Fig. 1: Achieved 24x speedup, theoretical 32x possible

• Generated training data on 16x16, 32x32, and 64x64 receiver
grids, with ground truth of 128x128 receiver grid

Data Only Neural Networks

• We trained separate networks on each of the generated grids

• Our network, NN(ys,x, t, θ), takes in a source location, a re-
ceiver location, a time step, and the weights it wishes to optimize
via mean squared error loss
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||p̃− p||22 + ||ũ− u||22 + ||ṽ − v||22

• Our network returns pressure and x- and y-velocity predictions

• Our final architecture was 5 hidden layers, 100 neurons each, 2
skip connections, tanh activation function

• Interpolation: utilized 80% of the data points

• Extrapolation: utilized the first 50% of the time steps

Physics Informed Neural Networks

• Incorporate the reflective boundary condition, zero initial condi-
tion, and differential operator loss into our loss function

Loverall = w1 · Ldata + w2 · (LDO + LBC + LIC)

LBC = ||∂xũ||1 + ||∂yṽ||1
LIC = ||p̃(x, y, 0)||1 + ||ũ(x, y, 0)||1 + ||ṽ(x, y, 0)||1

LDO = ||∂tp̃+∂xũ+∂tṽ−fs(x, t)||1+ ||∂xp̃+∂tũ||1+ ||∂yp̃+∂tṽ||1

• Scheme 1: Data + Physics Loss over the entire domain

• Scheme 2: Curriculum Learning, start training the network
with small values for frequency (ω = 5) and steepness (τ = 2)
and increment up to the desired (ω = 5000, τ = 5) [1]

• Scheme 3: Sequence to Sequence Learning, train on the time
steps in an iterative process using the previous as initial condi-
tions for the following [1]

• Scheme 4: Data Loss + Physics Loss over a specific region, use
only data loss for the first 0.8 seconds then incorporate physics
loss

Results: Data Only

Fig. 2: Pressure Predicts for different grids

As we increase the mesh size, as we expected the predictions become
more accurate, but there is a time tradeoff to consider.

16x16 32x32 64 x 64
Execution Time <1s <1s <1s
Relative Error 82.9% 27.4% 15.3%
Training Time 6 hrs 6 hrs 15hrs

Note that it takes the Galerkin Method 341 seconds to generate
the 128x128 grid, while our execution time is less than 1 second.

Fig. 3: Heatmap Pressure Predictions for different grids

Results: Data and Physics

• Schemes 1, 2, and 3: The network converged to a constant
zero prediction over all of space and time, indicating a strong
convergence towards this solution

• Scheme 4: The initial data-only prediction is accurate, but the
addition of physics loss gives us subpar results in the region of
extrapolation

Failure Modes

• Complex Loss Landscape: The physics loss landscape may
be too complex for our PINN to regularize using any of the
existing scheme [1]

• Forcing Term: When our forcing term is introduced, a numer-
ical discontinuity results, which PINNs historically struggle to
capture [2]

• Complex Parameters: While our steepness and frequency are
realistic, they may have been too complex for modelling the
wave without further simplifications

• We addressed the final point through curriculum learning, and
previous works have proved more successful when assuming the
forcing term as an initial condition (which is less realistic)

• Addressing the loss landscape is a much more challenging task,
as many regularization terms involve a differential operator
which could be ill-conditioned and non-convex [1]

Inverse Problem

• If we consider the forward problem of predicting the pressure
and velocity, the inverse problem is defined as inferring the
source location of the forcing term, given noisy observations of
pressure (or velocity) at specific receiver points

• Approach: Use one of our 16x16 grid data only networks as a
surrogate model that can predict p and v and take advantage
of its efficiency to solve the inverse problem

• We are able to sample from the posterior using a Metropolis
Hastings algorithm that would not be feasible without neural
network surrogates

• Results: These surrogates are fast enough to make MCMC
sampling feasible but they are also accurate enough to identify
source location with a very small mean squared error (10−4)

• For many sources, the true location is found at the edge of the
credible estimated interval, suggesting that the posterior may
be overly confident

Fig. 6: Ys = (0.556, 0.5), heatmap of whole domain, then true location

Fig. 7: Ys = (0.889, 0.25), heatmap of whole domain, then true location
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